›› 2011, Vol. 31 ›› Issue (4): 137-141.DOI: 10.3969/j.issn.1006-1355-2011.04.032

• 6.信号处理与故障诊断 • 上一篇    下一篇

采用改进遗传神经网络的多载荷振动信号故障诊断

王鑫1,于洪亮1,张琳2,段树林1,黄朝明1   

  1. ( 1.大连海事大学 轮机工程学院, 辽宁 大连 116026; 2.大连工业大学 纺织轻工学院, 辽宁 大连 116034 )
  • 收稿日期:2010-11-22 修回日期:2011-01-07 出版日期:2011-08-18 发布日期:2011-08-18
  • 通讯作者: 王鑫

Multi-load Fault Diagnosis of Vibration Signal Based on Improved Genetic Neural Network

WANG Xin 1,, YU Hong-liang 1, ZHANG Lin 2, DUAN Shu-lin 1, HUANG Chao-ming 1   

  1. (1.College of Marine Engineering, Dalian Maritime University, 116026 Dalian, Liaoning China;2.College of Textile and Light Industry, Dalian Polytechnic University, 116034 Dalian, Liaoning China )
  • Received:2010-11-22 Revised:2011-01-07 Online:2011-08-18 Published:2011-08-18
  • Contact: Wang Xin

摘要: 根据柴油机气阀机构运动规律,利用小波包分解提取缸盖振动信号的特征向量;针对多种载荷混合诊断的问题,采用二进制与实数混合编码的方式对使用遗传算法的误差反向传播(BP)神经网络的隐层结点数目、权值和阈值进行优化。通过实验检测,证明该方法在多种载荷混合振动信号诊断上,较一般方法学习、收敛速度快,检测准确率高。

关键词: 振动与波, 振动信号, BP神经网络, 故障诊断, 混合编码

Abstract: According to the motion law of diesel engine valve, the characteristic vector of cylinder-cover’s vibration signal is extracted by wavelet packet decomposition. For multi-load fault diagnosis, the hidden layer node number, weights and threshold of the back propagation genetic algorithms are optimized by binary and real value hybrid coding. Experiment results show that the method has obvious advantages on multi-load vibration signal fault diagnosis. It is able to improve the network learning ability, convergence speed and accuracy of detection.

Key words: vibration and wave, vibration signal, BP neural network, fault diagnosis, hybrid coding

中图分类号: