›› 2010, Vol. 30 ›› Issue (1): 82-85.DOI: 10.3969/j.issn.1006-1355.2010.01.082
• 信号处理与故障诊断 • Previous Articles Next Articles
FAN Tao1,LI Zhi-nong1,LU Ji-fu2,YUAN Xian-feng1
Received:
Revised:
Online:
Published:
Contact:
范涛1,李志农1,卢纪富2,员险锋1
通讯作者:
Abstract: A blind separation method of rotor’s fault sources based on variational Bayesian independent component analysis (VBICA) is proposed. This method can directly separate the signals of mechanical sources in noisy environment. In this method, the unknown noise need not to be regarded as an independent source, and the denoising preprocessing is not necessary either. Then, this method is compared with the traditional blind source separation method for machine faults. Finally, this method is applied for the fault sources separation of rotor system. Experiment results show that this method is very effective.
Key words: vibration and wave, blind source separation (BSS), variational bayesian, independent component analysis (ICA), fault diagnosis
摘要: 提出一种基于变分贝叶斯独立分量分析的故障源盲分离方法,该方法可直接对噪声干扰的机械源信号进行有效分离,即不需要将未知噪声看成一种独立源,也不需要进行消噪预处理。并将该方法与传统的机械源分离方法进行对比实验,实验结果表明该方法是非常有效的。
关键词: 振动与波, 盲源分离, 变分贝叶斯, 独立分量分析, 故障诊断
CLC Number:
TP227
TH17
TN911
FAN Tao;LI Zhi-nong;LU Ji-fu;YUAN Xian-feng. 《Blind Separation of Fault Sources Based on Variational Bayesian Independent Component Analysis》[J]. , 2010, 30(1): 82-85.
范涛;李志农;卢纪富;员险锋. 《基于变分贝叶斯独立分量分析的故障源盲分离》[J]. , 2010, 30(1): 82-85.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://nvc.sjtu.edu.cn/EN/10.3969/j.issn.1006-1355.2010.01.082
https://nvc.sjtu.edu.cn/EN/Y2010/V30/I1/82