局域均值分解(Local Mean Decomposition, LMD)是近年出现的一种新的时频分析方法,在故障诊断领域的应用日益广泛。本文提出一种改进的局域均值分解和小波降噪结合的降噪方法,并与小波变换的信号降噪方法、基于集合经验模态分解(Ensemble empirical mode decomposition, EEMD)和小波的信号降噪方法进行对比,利用信噪比和均方根误差比较降噪效果。再通过滚动轴承内外圈故障信号的频谱分析实例,证明该方法很好地去除混杂在故障信号中的噪声,准确地判断出滚动轴承发生故障的类型及部位。