›› 2011, Vol. 31 ›› Issue (6): 38-42.DOI: 10.3969/j.issn.1006-1355-2011.05.009

• 2.振动理论与数值解法 • 上一篇    下一篇

非线性梁压电分阶最优减振控制

刘灿昌1,刘露,柴山2,李红艳2   

  1. ( 山东理工大学 交通与车辆工程学院, 山东 淄博 255049 )
  • 收稿日期:2010-11-17 修回日期:2011-04-06 出版日期:2011-12-18 发布日期:2011-12-18
  • 通讯作者: 刘灿昌

Piezoelectric Graded Optimal Control for Vibration Reduction of Non-linear Beam

LIU Can-chang,LIU Lu,CHAI Shan,LI Hong-yan   

  1. ( School of Transport and Vehicle Engineering, Shandong University of Technology,Zibo 255049, Shandong China )
  • Received:2010-11-17 Revised:2011-04-06 Online:2011-12-18 Published:2011-12-18
  • Contact: LIU Can-chang

摘要: 提出非线性的分阶最优控制方法,并将其应用于梁的非线性振动压电减振控制。建立梁压电减振系统动力学模型,导出减振系统的非线性动力学运动微分方程,利用摄动法,实现非线性微分方程的线性化。将各阶线性方程解耦,化为状态空间方程。设计非线性分阶控制器,对减振系统进行分阶最优控制。仿真算例验证这种控制方法的有效性。

关键词: 振动与波, 减振, 最优控制, 压电, 梁, 非线性控制

Abstract: A non-linear graded optimal control scheme is proposed and used in the piezoelectric vibration reduction control of non-linear beams. The dynamic model of a non-linear vibration reduction beam with piezoelectric damper is built. The non-linear dynamic differential equations of the vibration reduction system are deduced. The differential equation is linearized into a set of linear equations by means of perturbation. The state space equations are obtained by decoupling in the space coordinates. The vibration reduction system is controlled by the non-linear graded controllers.

Key words: vibration and wave, vibration reduction, optimal control, piezoelectric, beam, non-linear control

中图分类号: