噪声与振动控制 ›› 2013, Vol. 33 ›› Issue (2): 138-143.DOI: 10.3969/j.issn.1006-1335.2013.02.031

• 6.信号处理与故障诊断 • 上一篇    下一篇

在线参数辨识的脉冲噪声有源控制

杨琴,周亚丽,张奇志   

  1. ( 北京信息科技大学  自动化学院,  北京  100192 )
  • 收稿日期:2012-05-03 修回日期:2012-07-12 出版日期:2013-04-18 发布日期:2013-04-18
  • 通讯作者: 杨琴
  • 基金资助:

    PHR201106131;1117204

Active Control of Impulsive Noise Based on On-line Parameter Identification

  • Received:2012-05-03 Revised:2012-07-12 Online:2013-04-18 Published:2013-04-18

摘要: 有源噪声控制是一种主动控制方法,目前已广泛应用于对高斯分布噪声进行衰减。但是传统的用于控制噪声的自适应算法不再适用大多数服从非高斯分布的脉冲噪声,主要原因是这种脉冲噪声没有有限的二阶统计量。在经典的Filter-x LMS算法的基础上提出两种适用于服从非高斯分布尖峰脉冲噪声情况下的在线参数辨识方法,一种是利用在线参数辨识方法对服从S[α]S稳定分布的脉冲噪声进行特征指数的估计,进而实现降噪目的的FxLMPest和FxLMADadapt算法;另一种是在Sun等人提出的SKM和AM算法基础上利用在线递归过程实现对幅度阈值估计的BDP算法。这两种算法均不需要获得脉冲噪声的特征指数和阈值的先验信息,仿真分析结果表明这两种算法能有效抑制脉冲噪声,并且其鲁棒性明显好于Filter-x LMS算法。

关键词: 声学;有源噪声控制;脉冲噪声;[&alpha, ]稳定分布;在线参数辨识

Abstract: Active noise control is a kind of active control method and has been widely used to obtain the attenuation of Gaussian noise signals. But for most of non-Gaussian impulsive noises, the traditional adaptive algorithms are not appropriate for controlling impulsive noise; the main reason is that there are no finite second-order moments for impulsive noise. In this paper, two kinds of on-line parameter identification algorithms based on the classical Filter-x LMS algorithm are presented, these algorithms are appropriate for the non-Gaussian impulsive noise. One is FxLMPest and FxLMADadapt algorithm based on on-line parameters identification to estimate characteristics exponent of impulsive noise with an SαS distribution; and the other is BDP algorithm based on a simple on-line recursive procedure to estimate amplitude thresholds of Sun’s method. Both methods do not need prior information of characteristics exponent and amplitude thresholds of impulsive noise, and the simulation results also show that the two methods can effectively suppress the impulsive noise, and its robust performance is significantly better than Filter-x LMS algorithm.

Key words: &alpha, -stable distribution

中图分类号: