噪声与振动控制 ›› 2012, Vol. 32 ›› Issue (6): 169-174.DOI: 10.3969/j.issn.1006-1335.2012.06.040

• 3.运载工具振动与噪声 • 上一篇    下一篇

汽车动力总成悬置系统鲁棒优化算法

王歆侃 12[Author]) AND 1[Journal]) AND year[Order])" target="_blank">2陈 剑 12[Author]) AND 1[Journal]) AND year[Order])" target="_blank">2   

  1. ( 1. 合肥工业大学  噪声振动工程研究所,  合肥  230009;2. 安徽省汽车NVH与可靠性重点实验室,  合肥  230009 )
  • 收稿日期:2012-02-03 修回日期:2012-01-10 出版日期:2012-12-18 发布日期:2012-12-18
  • 通讯作者: 王歆侃
  • 基金资助:

    国家“863”高技术研究发展计划资助项目(2006AA110101)安徽省科技攻关项目(08010202011;08010201002)

Robust Optimization Algorithm for Powertrain Mounting System   of Automobiles

WANG Xin-kan 12[Author]) AND 1[Journal]) AND year[Order])" target="_blank">2,CHEN Jian 12[Author]) AND 1[Journal]) AND year[Order])" target="_blank">2   

  1. ( 1. Institute of Noise and Vibration Research,  Hefei University of Technology,  Hefei  230009,  China;  2. Anhui Key Laboratory of Automobile NVH and Reliability,  Hefei  230009,  China )
  • Received:2012-02-03 Revised:2012-01-10 Online:2012-12-18 Published:2012-12-18

摘要: 应用鲁棒优化设计理论,考虑设计变量的不确定性对优化设计结果的影响,建立鲁棒优化模型。以动力总成悬置系统能量解耦为目标,悬置刚度参数为设计变量,考虑设计目标的均值和标准差,建立动力总成悬置系统的鲁棒优化模型。针对粒子群算法求解容易陷入局部最优解的问题,采用混合粒子群算法对动力总成悬置系统的悬置刚度参数进行鲁棒优化,并用Monte Carlo方法进行分析,以考察设计值的变化对目标函数的影响。结果表明,优化方法可以有效提高悬置系统的鲁棒性。

关键词: 振动与波, 动力总成悬置系统, 鲁棒优化, 混合粒子群

Abstract: Considering the influence of the uncertainty of design variables on the optimization design, the robust optimization design theory was used to build a robust model for the powertrain mounting system of automobiles. In this model, decoupling of energy distribution was taken as the target, the stiffness parameters of the mounting was taken as a design variable, and the mean and standard deviation of the target results were considered. Aiming at the problem that the particle swarm algorithm was easy to fall into a local optimal solution, a hybrid particle swarm algorithm was adopted to optimize the stiffness of the mounting of the powertrain mounting system, and the Monte Carlo method was used to analyze the optimized results to examine the influence of the variety of design values on the objective function. The results show that the method can improve the robustness of the mounting system effectively.

Key words: vibration and wave , powertrain mounting system , robust optimization , hybrid particle swarm

中图分类号: