Noise and Vibration Control ›› 2024, Vol. 44 ›› Issue (5): 128-132.
Previous Articles Next Articles
Received:
Revised:
Online:
Published:
张晓莉,黄嘉谞
摘要: 针对轴承信号故障特征容易被噪声淹没的问题,提出一种参数优化变分模态分解结合改进小波包阈值的去噪方法。首先,通过变分模态分解(Variational Mode Decomposition,VMD)结合改进粒子群算法(Improve Particle Swarm Optimization,IPSO)将含噪信号分解为若干本征模态分量(Intrinsic Mode Function,IMF)。以最大相关系数-相关峭度为准则,把IMF分为高值分量(High-value Intrinsic Mode Function,HIMF)和低值分量((Low-value Intrinsic Mode Function,LIMF )。再对LIMF进行改进小波包(Improved Wavelet Packet,IWP)阈值去噪。最后对重构信号进行包络解调,提取轴承故障特征频率,完成故障诊断。实验结果表明,该方法不仅能够避免“过扼杀”现象,并且可以得到信噪比更高的去噪信号。
关键词: 振动与波, 变分模态分解, 小波包阈值去噪, 相关峭度, 相关系数, 轴承
张晓莉, 黄嘉谞. 参数优化VMD结合改进小波包阈值的去噪方法[J]. 噪声与振动控制, 2024, 44(5): 128-132.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://nvc.sjtu.edu.cn/EN/
https://nvc.sjtu.edu.cn/EN/Y2024/V44/I5/128