针对目前故障诊断中从大量信号中难以自适应选取有效信号的问题,提出一种将小波包分解与shannon熵相结合自适应选取有效信号的方法。对故障信号进行小波包分解,计算频带熵值以量化信号的复杂程度。以熵值大小为指标,找寻小波包最大熵所在的一段频率信号,以此信号为有效信号进行小波包信号重构。将重构后信号进行EMD分解,对得到的IMF分量进行Hilbert包络谱分析,有效分离和突出故障频率。实验研究表明采用该方法自适应选取的有效信号能够保证所提取轴承故障特征频率的有效性和直观性,使故障诊断的实时性得到增强。