噪声与振动控制 ›› 2018, Vol. 38 ›› Issue (2): 162-167.DOI: 10.3969/j.issn.1006-1355.2018.02.031
刘义亚1, 2[Author]) AND 1[Journal]) AND year[Order])" target="_blank">2[Author]) AND 1[Journal]) AND year[Order])" target="_blank">2[Author]) AND 1[Journal]) AND year[Order])" target="_blank">2,李可1, 2[Author]) AND 1[Journal]) AND year[Order])" target="_blank">2[Author]) AND 1[Journal]) AND year[Order])" target="_blank">2[Author]) AND 1[Journal]) AND year[Order])" target="_blank">2,宿磊1, 2[Author]) AND 1[Journal]) AND year[Order])" target="_blank">2[Author]) AND 1[Journal]) AND year[Order])" target="_blank">2[Author]) AND 1[Journal]) AND year[Order])" target="_blank">2
摘要:
由于提取滚动轴承的非平稳非线性信号特征较为困难,强噪声背景下难以诊断早期故障,故而提出一种基于局部特征尺度分解(Local Characteristic-scale Decomposition,LCD)和核极限学习机(Kernel Extreme Learning Machine,KELM)的智能诊断方法(LCD_KELM)。该方法首先对信号进行LCD分解,将其分解成多个內禀尺度函数(Intrinsic Scale Component ,ISC),选取包含有效频率成分的ISC并计算其近似熵值(Approximate Entropy,ApEn),使用KELM对随机选取的近似熵值进行训练,保存训练参数后,利用剩余的近似熵值进行测试,实验结果表明LCD_KELM具有较高的诊断准确率,能够对滚动轴承运行状态进行高精度诊断,从而判断滚动轴承的运转状况。
中图分类号: