Noise and Vibration Control ›› 2025, Vol. 45 ›› Issue (4): 150-156.
Previous Articles Next Articles
Received:
Revised:
Online:
Published:
李鑫延,赵俊生,王慧云,安鑫凯,郭少杰,王淋
摘要: 针对转子系统采集的振动信号中存在较多噪声使得轴心轨迹混乱、故障特征难以提取的问题,提出一种逐次变分模态分解算法(Sequential Variational Mode Decomposition,SVMD)与奇异值分解(Singular Value Decomposition,SVD)相结合的转子轴心轨迹提纯方法。首先,使用SVMD算法将采集的原始振动信号分解为一系列本征模态分量(Intrinsic Mode Functions,IMFs);其次,根据峭度、能量熵与皮尔逊相关系数挑选有效分量并重构信号;然后,对重构信号进行奇异值降噪处理;最后,合成提纯后轴心轨迹。通过LabVIEW轴心轨迹仿真数据与转子实验台实测数据,并和基于差分谱SVD方法、带自适应噪声的完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition of Adaptive Noise,CEEMDAN)结合小波阈值方法对比分析,结果显示:采用SVMD-SVD方法提纯得到的轴心轨迹更加清晰,验证了该方法的有效性与可行性。
李鑫延, 赵俊生, 王慧云, 安鑫凯, 郭少杰, 王淋. SVMD-SVD联合的转子故障特征提取方法研究[J]. 噪声与振动控制, 2025, 45(4): 150-156.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://nvc.sjtu.edu.cn/EN/
https://nvc.sjtu.edu.cn/EN/Y2025/V45/I4/150